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Abstract-The flow in the entrance region of heated curved pipes is analysed. Two cases of heating-a 
constant temperature at the wall, and a constant flux of heat at the wall-are considered. Using boundary 
layer approximations and the method of matched asymptotic expansions, the combined effects of curvature, 
entrance region and the buoyancy is studied. It is found that buoyancy disturbs the symmetric secondary 
motion induced by curvature, the deviation depending on the type of thermal input at the wall. It is also 
found that the oscillatory nature of the Nusselt number in the constant temperature case decreases as the 

Peclet number is increased. 

INTRODUCTION 

THE STUDY of developing flow has attracted much 
attention in the last decade, in view of its possible 
implications in blood flows in the cardiovascular sys- 
tem and in other engineering problems. The entry 
regions in the arteries have been identified as the 
regions most prone to the development of athero- 
sclerosis-----a disease manifested by the thickening of 
the arterial wall. In engineering applications, it has 
been found experimentally, that the pumping power 
needed to maintain a given flux in the developing 
region is more than that needed in the fully developed 
region. Besides the experimental studies, numerous 
theoretical analyses have been undertaken to give a 
proper mathematical model for the flow in the devel- 
oping region. 

The introduction of thermal boundary conditions 
at the wall of a pipe affects the flow quite drastically. 
Depending on the relative magnitudes of buoyancy 
and viscous forces, either a free convection or a forced 
convection is set up. In either case, a secondary Ilow 
is set up even in a straight pipe. Morton [l] showed 
the development of secondary flow for small Re Ra, 

where Re is the Reynolds number and Ra the Rayleigh 
number-the product giving a measure of the ratio of 
buoyancy forces to viscous forces. Mori and Nakay- 
ama ]2] extended the analysis to higher values of 
ReRa. With physioIogica1 applications in mind, 
MahaIakshmi and Devanathan [3] obtained the sol- 
ution for heat transfer in tubes of varying cross- 
sections. 

In this paper, we study the entry flow in a heated 
curved pipe. The first theoretical analysis of flow in 
curved pipes was given by Dean [4, 51. He showed 
that the flow depended on a single non-dimensional 
parameter D = (26)“*Re, now called the Dean 
number. Since the solution was obtained as a regular 
perturbation on D, the analysis was restricted to 
D < 96. Since then, various authors have tried to relax 
this restriction on D. McConologue and Srivastava 
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[6], using numerical methods obtained accurate results 
for D -c 600, while Collins and Dennis [7] went up to 
D N 5000. Barua [8] using the method of matched 
asymptotic expansions established the existence of a 
boundary layer on the inside of a curved pipe. 

The problem of entry flow in heated straight pipes 
has been looked into by various authors. Lawrence 
and Chato [9] developed a numerical method for the 
calculation of entrance flows in vertical tubes. They 
found that the transition to turbulence depended on 
the initial velocity profiles and the thermal condition 
on the wall. Yao [lo] obtained the solution to the 
problem as a perturbation of the developing flow in an 
unheated straight pipe, and observed two secondary 
vortices resulting from the combination of radial 
directional motion and the vertical downward 
motion. 

This paper deals with the entry flow in a heated 
curved pipe. We consider two different kinds of heat- 
ing at the wall-a constant temperature T,.,, and a 
constant flux of heat at the wall, qw, herein after 
referred to as cases I and II, respectively. Singh [l l] 
considered the entry flow in an unheated curved pipe, 
and obtained the solution as a perturbation on the 
straight tube solution for small values of 6, the cur- 
vature parameter, while Yao and Berger 1121 obtained 
a numerical solution to the same problem. Pedley 
[I 31 using a different set of scales to incorporate the 
curvature effect overcame this restriction on 6. An 
excellent review of entry flow in pipes, heated, 
unheated, straight or curved is given in Yao [IO], and 
Yao and Berger [14]. 

FORMULATION OF TtlE PROBLEM 

We assume that the fluid enters the pipe from a 
reservoir of constant pressure head, with a constant 
temperature T,. The wall is assumed to be kept at 
constant temperature Tw in case I, while in case II, it 
is assumed that there is a constant flux of heat qw 
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NOMENCLATURE 

h” 
radius of cross-section of the pipe (R, 4, a) coordinates of any point in the 
radius of curvature of the pipe toroidal system 

D Dean’s number (U, V, W) velocity of the fluid 
Gr Grashof number (u, v, w) non-dimensional velocity of the fluid 
k conductivity of the fluid (Us, v,, w,) velocity in the boundary layer. 

ii non-dimensional pressure 
I’ dimensional pressure Greek symbols 
Pr Prandtl number 6 curvature ratio, a/b 

tlw constant flux of heat at the wall- .? Cr/Re2 in case I, and Gr/Re’j’ in case II 
case II 9 boundary layer coordinate in the radial 

Re Reynolds number direction 

7-0 constant inlet temperature 0 non-dimensional temperature 

T%% constant temperature at the wall P density. 

WI2 constant entry velocity 

at the wall. Figure 1 shows the toroidal system of The variables are non-dimensionalized as follows : 
coordinates used. The pipe is supposed to be coiled in 
the form of a circle with centre 0, radius b and 02 as (u, l’, ++J) = (U, v, W)i W”, ?i = iqpw; 

the axis. The centre of the cross-section of the pipe C 0 = (T-T,.,)/(T,-T,), r = R/a (2) 
is in a plane making an angle CI with a fixed axial plane. 
The length of OC is 6, the radius of curvature of the 

where a is the radius of the pipe. 

pipe. The plane passing through 0 and perpendicular 
Writing s’ = bu, and s = s’]a, the governing equa- 

to OZ is called the central plane, and the circle traced 
tions are 

out by C is the central line. Any point P in the flow 1+2Srcosd, og 06 sin 4 u’, 
field is identified by its coordinates (R, 4, ct), where R ‘, + hr 

u+T-h-.-+I?=O (3) 

is the. distance CP, 4 is the angle made by CP with OC 
extended. Let the velocity components in this coor- ,$>Z = --PI 
dinate system be (U, V, W). 

We first consider case I, where the ffuid enters the 
tube from a constant dynamic pressure head at a 
temperature To, and the wall is kept at a constant 
temperature T,. Thus, the entry conditions are 

u=o 

v=o (1) 

w= hW,/(h+Rcos&) 

T= TO. 

i $ (hw, - 6r sin & - ru,) + E% cos 4 (5) 

UW, + E.& $ y + 
c?cos+ 6sin$ 
-UW - -------Uuu’ 

r h h 

I%. I. Coordinate system 
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where 

h = 1+6rcos4 

6 = a/b 

Re = Reynolds number = Woa/v 

Pr = Prandtl number = v/k 

E = Gr/Re2, where Gr is the Grashof number. 

The corresponding boundary conditions are 

u=v=o, w=l/h, e= -I ats=O 

and (8) 
u=v=w=8=0 onr=l. 

In writing down these equations of motion, we have 
invoked the Boussinesq approximation by assuming 
that the density variations due to heating occurs only 
in the buoyancy terms. This approximation is valid 
when the fluid density changes only by a small 
amount. 

SOLUTION 

As the fluid enters the pipe, viscous forces are con- 
fined to the wall of the pipe. Thus, the flow field can 
be divided into two regions-a boundary layer, in 
which the viscous forces are balanced by the inertia 
forces, and a core region, in which the centrifugal 
forces arising out of the curvature of the pipe is bal- 
anced by the pressure gradient. Apart from these 
forces, heating of the wall gives rise to buoyancy forces 
inside the thermal boundary layer. The ratio of the 
thermal boundary layer thickness to momentum 
boundary layer thickness depends on Prandti number. 
In the core region, the effects of both viscosity and 
heat conduction can be ignored. The equations in the 
core region can be obtained from equations (3)-(7) 
by letting Re -+ co. The solutions to these reduced 
equations are 

J = UC = 0 ) WC = l/h, B’ = -1/2h2, 8’ = -1. 

(9) 

For solutions in the boundary layer, we observe 
that near the entrance, the flow will be similar to that 
past a flat plate. Keeping this in mind, we rescale the 
variables as follows : 

Re”’ (1 -r) Re- ‘I2 u 
rl= 

b,J(2s) ’ u=h,Jo 

where 
h, = 1+6cos+ 

Equations (3t(7) are then transformed into 

~,“+W,“--~w,.V , I 

= 2& 
[ 

v,+ + +,n-v,)] (11) 
0 

p, = 0 provided Gr CC Resi2 

v,,+~,v,,+w,(ttv,,-2~v,,)-2~b~~~ 

(12) 

=2rh; v, [( S sin 4 
v,,+~ VIII 

0 

6sin4 

+ h; 
---ww:--EeCOS~ (13) 1 

= 2& 0, 
[( 

w,+ + 
VW ,,a sin I#J 

h >I (14) 
0 

= 2sh;v, 
[ 

e+ + 
&$in$ (15) 

0 1 
with boundary conditions 

~,=v,=~,=e=o onr]=O 

u,,w,,e-+u=,wc,ec asq+co. 

The scaling in equation (10) has been done in such 
a way that near the entrance, the flow is similar to that 
on a flat plate. Accordingly, we expand all variables in 
powers of S. Thus 

R, = 2 SR,,(V,$J) (16) 
n=O 

where R stands for u, v, w and 0. Using these expan- 
sions in the boundary layer equations (1 l)-(15) and 
solving the various order terms, we obtain the fol- 
lowing expressions for the velocity components and 
temperature in the boundary layer : 

u = (fo-rtf~)+s2[(4hoScos~ 

-46’sin2d)(f,+5F,-qF;) 

-(16h~&sin~co~~+4h$ssin~)(f-~+5F~ 

-qF;)+4d2sin2 c#J~; +4&r: sin4cos4f;] 

(17) 
26 sin 4 

c = s h f;+2h;ecos+f; 1 (18) 
0 

w = f&+s2[46(hocos4-6sin24)F; 

- (4his sin 4 + 16h$s6 sin 4 cos c$)FJ (19) 

e = s2[46(ho cos 4-46 sin2 $)T, 

- (4h$ sin 4 + 16h@ sin 4 cos 4)T2] (20) 

where the functions appearing satisfy the following 
differential equations : 

f;“+ fof{ = 0, fo(0) = f;(o) = f;(m)- 1 = 0 

07, 
pr + foe;, = 0, e,,(O) = e,,(+ = 0 

f.,J = &, f;(O) = x(O) = J(m) = 0, i = l,2 

L = ( )“‘+fo( I” -2f8 ) 



s1 = fd2-1, S2 = -O,o where the functions occurring satisfy the following 

L,Fi = Qi, F,(O) = F,!(O) = F:(m) = 0, i = 1,2 
differential equations : 

L, = ( )“‘+fO( )“-4_&( )‘+5f;( ) 
fo”‘+fofd’= 0, fo(0) = f;(o) = f;(m)-1 = 0 

Q, = -_fd’fir Qz = -fd’.fz 
0’; I 

L3Ti = Ri, Ti(0) = Ti(co) = 0, i = 1,2 
F”+,f,F”-2f;F’ = f/2-1, 

L3 = ( )“/Pr+fd )‘-4f;( ) F(0) = F’(0) = F’(m) = 0 

Ri = -(5F,+f;)B’,,, i = 1,2. H”‘+ fbH”-3f;H’ = -0, ,, 

It can be observed that, like in classical boundary 
layer analysis, the normal velocity component in the 

H(0) = H’(0) = H’(m) = 0 

boundary layer has not been matched with that in the G;“+ fOG;-4f;G; +Sfb”G, = -F’f,“, 

core. This unmatched velocity component gives the 
boundary condition for the higher order core solution. 

G,(O) = G;(O) = G;(m) = 0 

In case II, the thermal boundary condition on the G;‘+f,G;--5f;G;+6f;G, = -Hf;, 

wall is of constant flux, that is G,(O) = G;(O) = G;(m) = 0 

8T 
p= 
dR qw 

on R = a. (21) 
DP, = Qi, P,‘(O) = P,!(m) = 0, i = 1,2,3 

where 
Since the length scale in the radial direction in the 
boundary layer is Rem ‘I’, we now non-dimensionalize 0X+ f ()‘-5f’() 

Pr O 0 

temperature as 

6’ = (T- T,)k Re”*/q,a (22) 
Q, = SG,O;,-FB;, 

the other non-dimensional variables being the same 
Q2 = -Fe;, 

as before. The core solution in this case is Q3 = -F’B,, +F’O;, 

Uc = vc = 8” = 0, $ = l/h, pc = -1/2h*. L,T, = S,, T,‘(O) = T,(m) = 0, i = 1,2,3 

The boundary layer equations along with the where 
boundary and matching conditions in this case suggest 
expansions in half integer powers of s as L =O”+f()‘-6/.‘() 4 

Pr O 0 

Y, = i: Se!* Y,,, (23) 
n=ll 

S, = -6G,0;,-HtI;,+G;e,, 

where Y, stands for u, v, w, or 8, and t?, = O/ho in this S2 = -H’B,, 

case. The velocity and temperature in the boundary S, = H/O;,-H’B,, 
layer are thus given by 

u, = (f0-~f~)+s2[462sin2~F 

+46(h,cos$-6sin24)(F+5G, -qG;)] RESULTS AND DISCUSSIONS 

+s5/*[6G,-yG~+4~6h~sin~cos~H’ In this paper, we have studied the flow development 

- (4&h; sin C#J - 20hffd sin 4 cos 4)H] (24) 
in a heated curved pipe. Two different kinds of heat- 
ing-a constant temperature T, at the wall, and a 

26 sin $J 
v, = ~~F’s+2h~~6cos~H’s3’* 

constant flux of heat qw at the wall have been 

h, 
(25) 

considered. Before going into the results, we will give 

W, = f’~+s’[46(h,cos+6sin2$)G;] 
a brief description of the physics of the flow. 

To begin with, suppose that the flow is taking place 
-ss”[(20h@ sin 4~0s C#J in an unheated curved pipe. Because of curvature, 

+4&h: sin 4)G;] (26) 
a pressure gradient is set up towards the centre of 
curvature to balance the centrifugal force arising out 

8, =s’i20,,+[46(h,cos~-6sin’+)P, of curvature. This pressure gradient varies across the 

+46’sin* 4P2 +4hi6’sinZ UP,]?” 
cross-section, and thus sets up a secondary motion 
symmetric about the central plane. This secondary 

+ [ - (4&h: sin 4 +206&h: sin 4 cos 4)T, flow is superimposed on the primary motion, and has 

+ 4h&d sin 4 cos 4TZ 
been discussed by Singh [ 1 l] and Pedley [ 131. When 
heat is added to the system, a second secondary 

+4e6hisin4cos4T,]s3 (27) motion arising out of the buoyancy effect is also super- 
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imposed on the primary flow. Yao [lo] has considered 

the entry flow in a heated straight pipe, and has estab- 
lished the existence of this secondary motion. 

The equation governing the various functions 
occurring in the velocity and temperature fields are 
nonlinear and coupled, and hence no analytical sol- 
ution is possible. We have therefore solved them 
numerically, adopting the Runge-Kutta-Gill method 
with the shooting technique. 

The nondimensionalization, as well as the per- 
turbation scheme have been introduced with a view 
to avoid the restriction on the curvature parameter 6. 
In equation (10) introduction of the Q dependence 

through h, in MJ, and r~ incorporates the fact that the 
axial core velocity is more on the outer bend, and that 
the boundary layer thickness is less there. This means, 
to leading order the flow is the same as the Blasius 
boundary layer flow over a flat plate. The perturbation 
with respect to the axial coordinate s, is natural when 
we are looking only at the entry region. Yao [lo] has 
perturbed with respect to E and hence had to restrict 
the analysis to small values of E. In our analysis, we 
have overcome this restriction on E and 6. 

In case I, the axial velocity in the boundary layer is 

O.l- 

0,08- 

0.06- 

/-. 
I’ 

\ \ 
I \ 

I \ 

// 

\ 

\ 

: 
\ 
I 

: 

\ 
\ 

given by equation (19). The first term of O(1) rep- 

resents the Blasius boundary layer velocity. This is 
because, the fluid particles have to travel some dis- 

tance before getting the effect of curvature and 
heating. These effects are felt at O(?). The first term 
in brackets in equation (19) is due to curvature. Figure 
2 depicts the variations of F’, and F; which gives the 
heating effects on the axial velocity. The latter depends 
on Prandtl number Pr. 

The secondary velocity which is developed has 
again two components-one due to curvature and 
another one due to thermal boundary conditions, as 
can be seen from equations (18) and (25). However, 
in case I, both the effects are felt at 0 (s), while in case 

II, the thermal effect is felt only at 0(s3’*). To start 
with, the flow does not have any azimuthal velocity, 
but curvature and heating introduces the secondary 
flow. These effects have been observed by Pedley [I 31 
for flow in an unheated curved pipe, and by Yao [lo] 
in a straight heated pipe. Figures 3 and 4 depict the 
secondary velocity at various cross-sections. In case 
I, it is positive at the outer bend, and negative at the 
inner bend, while in case II, it is vice versa. This 
suggests that the secondary flow developed is different 

F1 
-- - ---- 5 

FIG. 2. Effects of curvature and heating on axial velocity in the boundary layer--case I. 
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0 .I 

0.2 

0.1 

-v at fl ~0 

__ --. V at Q =90” 

b=Z.O 

-7 
FIG. 3. Secondary velocity in the boundary layer--case I. 

in the two cases. It can also be seen from the figures, Figures 5 and 6 represent the temperature dis- 
that the secondary velocity grows as we go down- tribution in the boundary layer in the two cases. It 
stream, and we can expect that when the flow is fully can be observed that though the wall is maintained at 
developed, the secondary flow will tend to that constant temperature both axially and azimuthally, 
obtained by Yao and Berger [14]. the boundary layer heating is not uniform. It gets 

O.OSr 

-v at@=0 

--___-- -v at 9 =ld 

0 0.8 1.6 2.4 3.2 4.0 4.0 5.6 6.0 

FIG. 4. Secondary velocity in the boundary layer--case II. 
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FIG. 5. Temperature distribution in the boundary layer at inner and outer bends-ase I. 

i 
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t 

1 

- 8 at@=0 

---- 0 at @=180” 

FIG. 6. Temperature distribution in the boundary layer at inner and outer bends+ase II. 
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heated up more on the inner bend than at the outer 
bend. The same observation can be made in the second 
case as well, even though there is a constant flux of 

heat throughout. A possible reason for this could be 
that the fluid particles near the outer bend, before 
getting heated, are swept to the inside bend by the 
secondary velocity. 

The non-dimensional shear stresses are given by 

and hence are in the two cases given by 

-~sin’~)F;‘(O)+(4h$sin~ 

+ 16h@ sin C#J cos @)F;(O)}] (28) 

,f,“(O) +2h;& cos q5J;“(O) 1 
T” = _ , J&(o)+ * 

h;J(W 
s -46(h,,cos$ 

-6*sin* $)G;(0)-s5’2(20hffc6sin~cos$ 

+4Ehi sin +)G;(O)] 

7”’ = _ B 26 sin C#J 
r9 

h,,J(Zs) ho F”(o)S 

+2h;Ecos ~$ff”(O)s”* 1 

(29) 

(30) 

(31) 

It is clear that T,, varies with both s and C#J. In the 
case of an unheated straight pipe, the shearing stress 
reduces to 

T,a = - 

(32) 

In such a case, for small s, the stress is a maximum 
on the inner bend. But as s increases, the point of 
maximum stress shifts to the outer bend, the shifting 
taking place at s = 1.92 (1 - 6 2)- I’*. However, in the 
presence of thermal boundary conditions, we cannot 
obtain such an explicit expression for the changeover. 
In this case also, initially for small s, the stress is 
maximum at the inner bend, but as s increases, the 
O(s*) terms increase in dominance, and the point of 
maximum shear shifts to near the outer bend, though 
it is never at the outer bend. In the case of constant 
temperature conditions, it is near C$ = 60”, and in the 
case of constant heat flux, it is near C$ = 330”. The 
shear being initially more on the inner bend is because, 

for small s, the first term in equations (28) and (30) is 
dominant, thereby reproducing the features of an 
entry flow in an unheated pipe. The exact location of 
the point of maximum shear stress in the two cases are 
different, and this again suggests that the secondary 
motion is different in the two cases. 

Equations (29) and (31) give the azimuthal shear 
stress on the wall in the two cases. In case I, we see 
that the azimuthal shear stress is proportional to axial 
distance s, and hence motion will be similar in all the 
cross-sectional planes. To find out the plane about 
which the secondary motion is symmetrical we find 
out the point at which the azimuthal shear stress van- 
ishes. It is found from the expressions that in the case 
of constant temperature input, the azimuthal angle at 
which T_+ vanishes is independent of the cross-section, 
and is given by 

f$ = tan +!!U!U]. 

We can obtain the particular cases for an unheated 
curved pipe and a heated straight pipe from this 
expression. Thus, in the absence of heating, the azi- 
muthal shear stress vanishes at 4 = 0” and 180”, that 
is at the outer bend and the inner bend, respectively, 
as found by Pedley [ 131, while in the case of a heated 

straight pipe, it vanishes at 4 = +90”, as found by 
Yao [lo]. In the case of a heated curved pipe, the point 
of vanishing of the azimuthal shear stress depends on 
the Prandtl number. 

In case II, the azimuthal angle at which the azi- 
muthal shear stress vanishes is given by 

It is thus a function of the axial distance, and hence 
the secondary motion depends on the cross-section 
considered. Thus, we can conclude that the combined 
effect of buoyancy and curvature is to displace the 
symmetric nature of the secondary motion, and this 
displacement depends on the type of thermal input 
given at the wall. 

For the case of flow with constant temperature at 
the wall, we calculate the heat flux through the Nusselt 
number, Nu, which is given by 

Nu = - 2p [H; 0(O) + {4&h,, cos 4 
Bh, J(W 

-ssin’$)T;(O)-(4h$sin4 

+ 16h,@ sin CJ~ cos 4)T;(O)}s’]. (33) 

This is depicted in Fig. 7 as a function of 4. We see 
that very near the entrance, at s = 0.1, NM is maximum 
at the inner bend. However, as we go downstream, 
the point of maximum NM shifts towards the outer 
bend. The explanation is very similar to that for the 
axial shear stress, for the two expressions are similar. 
This shift of the point of maximum Nu to near the 
outer bend is more pronounced at Pr = 10. As Pr is 
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-P 

FIG. 7. Variation of Nusselt number with azimuthal angle+ase I. 

0.6- 

I I I I I I I I I I I I I 

0 30 60 90 120 150 180 210 240 270 300 330 360 

-# 
FIG. 8. Variation of axial shear stress with azimuthal angle--cases I and II. 
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- Case I 

----- Case II 

60 120 180 240 300 360 

-I 

FIG. 9. Variation of azimuthal shear stress with azimuthal angle 

increased, the oscillatory nature of Nu is not so 
evident. The variations of the shear stress are plotted 
in Figs. 8 and 9. 

It should be noted that in obtaining the boundary 
conditions for ihe boundary layer velocity com- 
ponents, the matching has been done only for the 
axial and a~mut~ai velocity components. The radial 
velocity component in the boundary layer has not 
been matched. This is true in any boundary layer 
analysis, and gives rise to the displacement effect.in 
the core. In view of the ~-pe~urbation used in this 
study to avoid the restriction on 6, the displacement 
effect on the core cannot. be analysed. This aspect has 
been studied in a companion paper under preparation. 
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ECOULEMENT D’ENTRE DANS LES TUBES COURBES ET CHAUFFES 

RCum&-On analyse l’ecoulement dans la region d’entrte des tubes courbes et chauffes. On considbre les 
deux cas de temperature parietale uniforme et de flux de chaleur uniforme. A partir des approximations 
de la couche limite et de la mbthode des developpements asymptotiques, les effets combines de courbure, 
d’entree et de pesanteur sont consider&. On trouve que la pesanteur perturbe l’ecoulement secondaire 
symetrique induit par la courbure, la deviation d&pendant du type d’apport de chaleur a la paroi. On 
trouve aussi que la nature oscillatoire du nombre de Nusselt, a temperature uniforme, decroit lorsque le 

nombre de P&clet augmente. 

STRdMUNG IM EINLAUFGEBIET BEHEIZTER GEKRUMMTER ROHRE 

Zusarnmenfaasuog-Es wird die Striimung im Einlaufgebiet beheizter gekrtbnmter Rohre untersucht. Es 
wird sowohl der Fall konstanter Wandtemperatur als such konstanter Wand-Wiirmestromdichte be- 
trachtet. Unter Verwendung der Grenzschichtnaherungen und der Methode der angepaBten Rei- 
henentwicklungen werden die kombinierten Einflilsse der Kriimmung, des Einlaufgebietes und des Auf- 
triebes betrachtet. Es zeigt sich, daB der Auftrieb die durch die Krtlmmung hervorgerufene symmetrische 
Sekundlrbewegung stiirt. Die Abweichung ist abhlngig von der Art der Wlrmeeinbringung an der Wand. 
Man stellt such fest, da13 die Oszillationen der Nusselt-Zahl im Falle konstanter Wandtemperatur mit 

zunehmender Peclet-Zahl abnehmen. 

TE’IEHHE B HAgAJIbHOM YgACTKE KPABOJIHHERHO~ HAFPEBAEMOH TPYljbI 

hIIIOTmJIIfI-kIaJIH3HpyeTCK TeqeHHe B riaqa_nbrtoM yuacrxe riarpesaeMbrx xpsisonmiefiribrx rpy6. Pacc- 
MaTpHBEUOTCK ABK C,,yWS, HarpBa-nOCTOKHHaK TeMnepaTypa CTeHKH H nOCTO,,HHbIii TenJlOBOii nOTOK 

Ha Heii. B npH6JIHxeHHEi nOrpaHWIHOr0 CJIOK MeTOAOM CpaIWiBaeMbIX aCHMnTOTHWCKHX pZWlO)KeHHii 

H3yWloTCK COBMeCTHbIe 3@$CKTbI, 06yCAOBJIeHHbIe KPHBH3HOfi TPy6bI, HUlHWieM BXOAHOrO )“IXTKa H 

nOAl.eMHOii CHJlOii. HaiiAeHO,qTO nOAT&MHaR CHJIa BHOCBT B03MyUWHHR B CWMMeTPHSHOe BTOPWIHOe 

TeSeHHe, Bbl3BaHHOe KpHBH3HOii;WO BUIH'iEiHa 3BBHCHT OT cnoco6a llOA@lH TWJIa K CTeHKe. 06riapy- 
Xetio raxxce, sro rone6arenbnbrB xapaxrep qricna HyCCWIbTa B cnyqae n0monHHoii rehfneparypbr 

yMeebmaercn c pocro~ sncna ITerne. 


